资源类型

期刊论文 1187

会议视频 8

年份

2023 77

2022 98

2021 84

2020 86

2019 70

2018 45

2017 48

2016 51

2015 61

2014 61

2013 44

2012 50

2011 42

2010 63

2009 55

2008 42

2007 44

2006 30

2005 32

2004 23

展开 ︾

关键词

数学模型 13

模型试验 9

数值模拟 8

模型 7

有限元 5

ANSYS 4

COVID-19 4

不确定性 4

有限元法 4

GM(1 3

裂缝 3

计算机模拟 3

1)模型 2

DX桩 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

展开 ︾

检索范围:

排序: 展示方式:

Analytical model and finite element computation of braking torque in electromagnetic retarder

Lezhi YE,Guangzhao YANG,Desheng LI

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 368-379 doi: 10.1007/s11465-014-0314-x

摘要:

An analytical model has been developed for analyzing the braking torque in electromagnetic retarder by flux tube and armature reaction method. The magnetic field distribution in air gap, the eddy current induced in the rotor and the braking torque are calculated by the developed model. Two-dimensional and three-dimensional finite element models for retarder have also been developed. Results from the analytical model are compared with those from finite element models. The validity of these three models is checked by the comparison of the theoretical predictions and the measurements from an experimental prototype. The influencing factors of braking torque have been studied.

关键词: electromagnetic retarder     magnetic field distribution     magnetic circuit     finite element method    

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 344-354 doi: 10.1007/s11709-011-0124-8

摘要: An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented. The bridge is characterized by a system of post-tensioned and simply supported beams. The dynamic characteristics of the bridge, i.e. natural frequencies, mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm (ERA). Then, these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms (GA) to solve it. From the results of the ambient vibration test of this type of bridge, it is concluded that two-dimensional mode shapes exist: in the longitudinal and transverse; and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating. The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.

关键词: modal analysis     parameter identification     ambient vibration test     Eigensystem Realization Algorithm (ERA) method     finite element method    

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

Temperature control of transfer roller’s bearing based on finite element analysis

Peng ZHANG, Yourong LI, Han XIAO

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 215-218 doi: 10.1007/s11465-009-0026-9

摘要: After a heat preservation cover is installed on the main rolling line, the heat dissipation environment of the transfer roller working on the heat preservation cover is changed. To ensure the normal production, a reasonable working jet capacity of the roller neck is derived. First, a globe model of the transfer roller is built for finite element analysis. Second, the sub-model of the fixed end bearing is built and the boundary condition of the sub-model is supplied by the results of the globe model. The analysis result of the sub-model shows that the temperature of the transfer roller bearing exceeds 85°C a rolling periodicity later. With finite element analysis, the heat flux is obtained and the minimum working jet capacity is derived.

关键词: transfer roller bearing     finite element analysis     sub-model     temperature control    

Nonlinear finite element analysis of short-limbed wall

Zhi ZHANG, Qian GU, Shaomin PENG, Quanzhi CAI

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 125-130 doi: 10.1007/s11709-009-0025-2

摘要: Combined with the actual project, this paper carries out a nonlinear finite element analysis on 2 groups, 6 short-limbed shear walls, through the finite element calculation software ANSYS. The stress-strain relation of the models, and the effects of the type of sections and the axial compression ratios on the models can be obtained, providing a reference for future design.

关键词: short-limbed wall (SLW)     nonlinear finite element     separate model     axial compression ratios    

Iterative finite element model of nonlinear viscoplastic analyses for blended granular porous media

WU Yuching, ZHU Cimian

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 464-473 doi: 10.1007/s11709-007-0063-6

摘要: The iterative finite element model, in which an element is used to represent a single particle, is generated to analyze the global behavior of multiple-material aggregates of materially nonlinear viscoplastic particles. The genera

关键词: nonlinear viscoplastic     iterative     behavior     multiple-material    

Dynamic test and finite element model updating of bridge structures based on ambient vibration

HUANG Minshui, ZHU Hongping, LI Lin, GUO Wenzeng

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 139-144 doi: 10.1007/s11709-008-0028-4

摘要: The dynamic characteristics of bridge structures are the basis of structural dynamic response and seismic analysis, and are also an important target of health condition monitoring. In this paper, a three-dimensional finite-element model is first established for a highway bridge over a railroad on No.312 National Highway. Based on design drawings, the dynamic characteristics of the bridge are studied using finite element analysis and ambient vibration measurements. Thus, a set of data is selected based on sensitivity analysis and optimization theory; the finite element model of the bridge is updated. The numerical and experimental results show that the updated method is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring.

关键词: numerical     effective     Highway     vibration     complex external    

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 339-347 doi: 10.1007/s11709-010-0078-2

摘要: In this paper, a concurrent simulation framework for fatigue crack growth analysis is proposed using a novel small time scale model for fatigue mechanism analysis and the extended finite element method (X-FEM) for fatigue crack growth simulation. The proposed small time scale fatigue model does not require the cycle counting as those using the classical fatigue analysis methods and can be performed concurrently with structural/mechanical analysis. The X-FEM greatly facilitates crack growth simulation without remeshing requirements ahead of the crack tip as in the classical finite element method. The basic concept and theory of X-FEM was briefly introduced and numerical predictions of stress intensity factors are verified with reference solutions under both uniaxial and multiaxial loadings. The small time scale fatigue model is integrated into the numerical simulation algorithm for concurrent fatigue crack growth analysis. Model predictions are compared with available experimental observations for model validation.

关键词: small time scale model     extended finite element method (X-FEM)     crack growth     multiaxial    

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 15-37 doi: 10.1007/s11709-018-0465-7

摘要: In this study, the air blast response of the concrete dams including dam-reservoir interaction and acoustic cavitation in the reservoir is investigated. The finite element (FE) developed code are used to build three-dimensional (3D) finite element models of concrete dams. A fully coupled Euler-Lagrange formulation has been adopted herein. A previous developed model including the strain rate effects is employed to model the concrete material behavior subjected to blast loading. In addition, a one-fluid cavitating model is employed for the simulation of acoustic cavitation in the fluid domain. A parametric study is conducted to evaluate the effects of the air blast loading on the response of concrete dam systems. Hence, the analyses are performed for different heights of dam and different values of the charge distance from the charge center. Numerical results revealed that 1) concrete arch dams are more vulnerable to air blast loading than concrete gravity dams; 2) reservoir has mitigation effect on the response of concrete dams; 3) acoustic cavitation intensify crest displacement of concrete dams.

关键词: air blast loading     concrete dams     finite element     dam-reservoir interaction     cavitation     concrete damage model    

3D finite element analysis of composite noise barrier constructed of polyurethane products

Ben DAEE,Hesham El NAGGAR

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 100-110 doi: 10.1007/s11709-016-0364-8

摘要: This paper presents a numerical investigation on the structural performance of an innovative noise barrier consisting of poly-block, rigid polyurethane foam (RPF) and polyurea. The mechanical characteristics of RPF as well as the flexural resistance of the proposed wall system (poly-wall) were established and presented in another study. The experimental results are used in the current study to develop, calibrate and verify 3D finite element (FE) models of the wall system. The components of the poly-wall including steel rebars, poly-blocks and RPF cores were simulated and then verified using the results of experiments conducted on the wall components. The results of numerical analysis exhibited a satisfactory agreement with the experimental outcomes for the entire wall system. The verified numerical models were then used to conduct a parametric study on the performance of poly-wall models under uniform wind load and gravity load. The findings of the current study confirmed that the structural performance of poly-wall is satisfactory for noise barrier application. Simulation techniques for improvement of the numerical analysis of multi-martial 3D FE models were discussed.

关键词: 3D finite element     sound wall     rigid polyurethane foam     poly-wall     numerical model     calibration    

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1095-1104 doi: 10.1007/s11709-019-0538-2

摘要: The Prefabricated Cage System (PCS) has the advantages of high bearing capacity and good ductility. Meanwhile, it is convenient for factory production and it is beneficial to the cost savings, construction period shortening. Side joint is the weak region of PCS concrete frame and has great influence on seismic behavior of the whole structure. Thus systematically study on the seismic behavior of PCS concrete side joint is necessary. This paper presents a finite element study on behavior of the side joint under seismic loading. In the finite element model, PCS concrete and the reinforced concrete (RC) is modeled by the solid element and fiber-beam element, respectively. The numerical results is compared with the experimental results and it is found that the results of model based on fiber-beam element is in better agreement with the experimental results than solid element model. In addition, the overall seismic behavior of the side joints in PCS concrete is better than that of the RC with the same strength.

关键词: PCS concrete side joint     numerical simulation     fiber-beam element joint model     solid element joint model     seismic behavior    

Special Column on Multiscale Stochastic Finite Element Method

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 105-106 doi: 10.1007/s11709-015-0297-7

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 456-477 doi: 10.1007/s11709-019-0519-5

摘要:

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

关键词: computational method     finite element method     smoothed finite element method     strain smoothing technique     smoothing domain     weakened weak form     solid mechanics     softening effect     upper bound solution    

New analysis model for rotor-bearing systems based on plate theory

Zhinan ZHANG, Mingdong ZHOU, Weimin DING, Huifang MA

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 461-473 doi: 10.1007/s11465-019-0525-2

摘要: The purpose of this work is to develop a new analysis model for angular-contact, ball-bearing systems on the basis of plate theory instead of commonly known approaches that utilize spring elements. Axial and radial stiffness on an annular plate are developed based on plate, Timoshenko beam, and plasticity theories. The model is developed using theoretical and inductive methods and validated through a numerical simulation with the finite element method. The new analysis model is suitable for static and modal analyses of rotor-bearing systems. Numerical examples are presented to reveal the effectiveness and applicability of the proposed approach.

关键词: rotor-bearing system     rolling element bearing     plate theory     finite element analysis    

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 41-49 doi: 10.1007/s11465-014-0284-z

摘要:

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

关键词: thermal buckling     laminated composite plates     anisotropy     critical buckling temperature     finite-element method     high precision rectangular Hermitian element    

标题 作者 时间 类型 操作

Analytical model and finite element computation of braking torque in electromagnetic retarder

Lezhi YE,Guangzhao YANG,Desheng LI

期刊论文

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

期刊论文

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文

Temperature control of transfer roller’s bearing based on finite element analysis

Peng ZHANG, Yourong LI, Han XIAO

期刊论文

Nonlinear finite element analysis of short-limbed wall

Zhi ZHANG, Qian GU, Shaomin PENG, Quanzhi CAI

期刊论文

Iterative finite element model of nonlinear viscoplastic analyses for blended granular porous media

WU Yuching, ZHU Cimian

期刊论文

Dynamic test and finite element model updating of bridge structures based on ambient vibration

HUANG Minshui, ZHU Hongping, LI Lin, GUO Wenzeng

期刊论文

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

期刊论文

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

期刊论文

3D finite element analysis of composite noise barrier constructed of polyurethane products

Ben DAEE,Hesham El NAGGAR

期刊论文

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

期刊论文

Special Column on Multiscale Stochastic Finite Element Method

期刊论文

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

期刊论文

New analysis model for rotor-bearing systems based on plate theory

Zhinan ZHANG, Mingdong ZHOU, Weimin DING, Huifang MA

期刊论文

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

期刊论文